3t^4+5t^2-6=0

Simple and best practice solution for 3t^4+5t^2-6=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3t^4+5t^2-6=0 equation:


Simplifying
3t4 + 5t2 + -6 = 0

Reorder the terms:
-6 + 5t2 + 3t4 = 0

Solving
-6 + 5t2 + 3t4 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-2 + 1.666666667t2 + t4 = 0

Move the constant term to the right:

Add '2' to each side of the equation.
-2 + 1.666666667t2 + 2 + t4 = 0 + 2

Reorder the terms:
-2 + 2 + 1.666666667t2 + t4 = 0 + 2

Combine like terms: -2 + 2 = 0
0 + 1.666666667t2 + t4 = 0 + 2
1.666666667t2 + t4 = 0 + 2

Combine like terms: 0 + 2 = 2
1.666666667t2 + t4 = 2

The t term is 1.666666667t2.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667t2 + 0.6944444447 + t4 = 2 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667t2 + t4 = 2 + 0.6944444447

Combine like terms: 2 + 0.6944444447 = 2.6944444447
0.6944444447 + 1.666666667t2 + t4 = 2.6944444447

Factor a perfect square on the left side:
(t2 + 0.8333333335)(t2 + 0.8333333335) = 2.6944444447

Calculate the square root of the right side: 1.6414763

Break this problem into two subproblems by setting 
(t2 + 0.8333333335) equal to 1.6414763 and -1.6414763.

Subproblem 1

t2 + 0.8333333335 = 1.6414763 Simplifying t2 + 0.8333333335 = 1.6414763 Reorder the terms: 0.8333333335 + t2 = 1.6414763 Solving 0.8333333335 + t2 = 1.6414763 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + t2 = 1.6414763 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + t2 = 1.6414763 + -0.8333333335 t2 = 1.6414763 + -0.8333333335 Combine like terms: 1.6414763 + -0.8333333335 = 0.8081429665 t2 = 0.8081429665 Simplifying t2 = 0.8081429665 Take the square root of each side: t = {-0.898967723, 0.898967723}

Subproblem 2

t2 + 0.8333333335 = -1.6414763 Simplifying t2 + 0.8333333335 = -1.6414763 Reorder the terms: 0.8333333335 + t2 = -1.6414763 Solving 0.8333333335 + t2 = -1.6414763 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + t2 = -1.6414763 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + t2 = -1.6414763 + -0.8333333335 t2 = -1.6414763 + -0.8333333335 Combine like terms: -1.6414763 + -0.8333333335 = -2.4748096335 t2 = -2.4748096335 Simplifying t2 = -2.4748096335 Reorder the terms: 2.4748096335 + t2 = -2.4748096335 + 2.4748096335 Combine like terms: -2.4748096335 + 2.4748096335 = 0.0000000000 2.4748096335 + t2 = 0.0000000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 14x=3x+66 | | (131x+114114)/x=362 | | -6+1x=5 | | (-5+6i)(7+8i)= | | 7x+-6=43 | | 4/5(7b+3)=4b-12 | | 1-23=22 | | x-5+2x+18=58 | | [3x-6]+1=13 | | 10+4Y=6(y-2) | | 31+y=5 | | 3x^2+x-2*(1000000000000)=0 | | -4=-3/5x | | 2x-6=3x-11 | | 15y^2-23y+6=0 | | 2(8x-4)-4(2x-3)=20 | | 3x^3-12x^2-180x=0 | | 2.85-7=12.8y-2 | | (3i)(i)(8-3i)= | | -9x-13=-102 | | X^2+9=x-9 | | 85=13c+20 | | 4/6+3/2x+2=0 | | .5m+2=3m-3 | | x/2x-3y-y/3y-2x | | 21-y=1 | | (-2i)(2i)(8-2i)= | | 2(-3-2x)=4(36-3x) | | 2x+16-4x=30 | | (i)(5i)(-1+i)= | | 5x-7=9-3x | | 68m^2/17m |

Equations solver categories